(26) If \( f(x) = 4x – 2 \) and \( g(x) = 3x + 1 \), find \( (f \circ g)(-3) \) (i.e., \( f(g(-3)) \)).
- (a) \( 6 \)
- (b) \( -4 \)
- (c) \( -9 \)
- (d) \( 0 \)
(27) Solve for \(x\):
\[ 2(3x + 2) = 4(2x – 1) \]
- (a) \( x = -1 \)
- (b) \( x = 0 \)
- (c) \( x = 3 \)
- (d) \( x = 2 \)
(28) Evaluate the expression:
\[ \frac{3x^2 – 6x + 2}{x – 2} \]
- (a) \( 3x – 1 \)
- (b) \( 2x – 1 \)
- (c) \( 3x + 1 \)
- (d) \( 2x + 1 \)
(29) If \( f(x) = 2x + 3 \) and \( g(x) = x^2 – 2 \), find \( (g \circ f)(1) \) (i.e., \( g(f(1)) \)).
- (a) \( 7 \)
- (b) \( 35 \)
- (c) \( 12 \)
- (d) \( 11 \)
(30) Solve for \(x\):
\[ 5(3x – 2) = 2(4x + 1) \]
- (a) \( x = 2 \)
- (b) \( x = -1 \)
- (c) \( x = \frac{12}{7} \)
- (d) \( x = -\frac{7}{12} \)