(21) If \( f(x) = 2x – 1 \) and \( g(x) = x^2 + 3 \), find \( (f \circ g)(3) \) (i.e., \( f(g(3)) \)).
- (a) \( 9 \)
- (b) \( 16 \)
- (c) \( 13 \)
- (d) \( 12 \)
(22) Solve for \(x\):
\[ 3(2x + 1) = 5(x – 3) \]
- (a) \( x = -2 \)
- (b) \( x = 0 \)
- (c) \( x = 4 \)
- (d) \( x = 2 \)
(23) Evaluate the expression:
\[ \frac{4x^2 – 9}{2x – 3} \]
- (a) \( 2x + 3 \)
- (b) \( 2x + 3 \)
- (c) \( 2x – 3 \)
- (d) \( 2x – 4 \)
(24) If \( f(x) = 3x + 2 \) and \( g(x) = 2x – 1 \), find \( (g \circ f)(-2) \) (i.e., \( g(f(-2)) \)).
- (a) \( 1 \)
- (b) \( 7 \)
- (c) \( 5 \)
- (d) \( 3 \)
(25) Solve for \(x\):
\[ 4(2x – 1) = 2(3x + 2) \]
- (a) \( x = -1 \)
- (b) \( x = 1 \)
- (c) \( x = 6 \)
- (d) \( x = -2 \)