Algebra and Functions – Basic 1

(16) If \( f(x) = 3x + 4 \) and \( g(x) = 2x – 1 \), find \( (f \circ g)(2) \) (i.e., \( f(g(2)) \)).

  • (a) \( 7 \)
  • (b) \( 10 \)
  • (c) \( 17 \)
  • (d) \( 12 \)



(17) Solve for \(x\):
\[ 2(3x – 2) = 4(2x + 1) \]

  • (a) \( x = 1 \)
  • (b) \( x = 3 \)
  • (c) \( x = -2 \)
  • (d) \( x = 2 \)



(18) Evaluate the expression:
\[ \frac{2x^2 – 5x + 3}{x – 1} \]

  • (a) \( 2x – 3 \)
  • (b) \( 2x – 1 \)
  • (c) \( x – 3 \)
  • (d) \( x – 1 \)



(19) If \( f(x) = 5x – 3 \) and \( g(x) = 3x + 2 \), find \( (g \circ f)(-1) \) (i.e., \( g(f(-1)) \)).

  • (a) \( -1 \)
  • (b) \( -10 \)
  • (c) \( 4 \)
  • (d) \( 9 \)



(20) Solve for \(x\):
\[ \frac{2}{3}(x + 4) = \frac{5}{2}(3x – 1) \]

  • (a) \( x = 2 \)
  • (b) \( x = -\frac{10}{7} \)
  • (c) \( x = -2 \)
  • (d) \( x = \frac{7}{10} \)


Author: user