(16) If \( f(x) = 3x + 4 \) and \( g(x) = 2x – 1 \), find \( (f \circ g)(2) \) (i.e., \( f(g(2)) \)).
- (a) \( 7 \)
- (b) \( 10 \)
- (c) \( 17 \)
- (d) \( 12 \)
(17) Solve for \(x\):
\[ 2(3x – 2) = 4(2x + 1) \]
- (a) \( x = 1 \)
- (b) \( x = 3 \)
- (c) \( x = -2 \)
- (d) \( x = 2 \)
(18) Evaluate the expression:
\[ \frac{2x^2 – 5x + 3}{x – 1} \]
- (a) \( 2x – 3 \)
- (b) \( 2x – 1 \)
- (c) \( x – 3 \)
- (d) \( x – 1 \)
(19) If \( f(x) = 5x – 3 \) and \( g(x) = 3x + 2 \), find \( (g \circ f)(-1) \) (i.e., \( g(f(-1)) \)).
- (a) \( -1 \)
- (b) \( -10 \)
- (c) \( 4 \)
- (d) \( 9 \)
(20) Solve for \(x\):
\[ \frac{2}{3}(x + 4) = \frac{5}{2}(3x – 1) \]
- (a) \( x = 2 \)
- (b) \( x = -\frac{10}{7} \)
- (c) \( x = -2 \)
- (d) \( x = \frac{7}{10} \)