Algebra and Functions – Basic 1

(11) If \( f(x) = 2x + 5 \) and \( g(x) = 3x – 2 \), find \( (g \circ f)(-1) \) (i.e., \( g(f(-1)) \)).

  • (a) \( 4 \)
  • (b) \( -1 \)
  • (c) \( 13 \)
  • (d) \( 9 \)



(12) Solve for \(x\):
\[ 4(x + 2) = 2(3x – 1) \]

  • (a) \( x = 3 \)
  • (b) \( x = 4 \)
  • (c) \( x = 2 \)
  • (d) \( x = 1 \)



(13) Evaluate the expression:
\[ \frac{3}{4} \cdot \left( \frac{2}{3} + \frac{5}{6} \right) \]

  • (a) \( \frac{7}{8} \)
  • (b) \( \frac{11}{12} \)
  • (c) \( \frac{5}{4} \)
  • (d) \( \frac{3}{2} \)



(14) If \( f(x) = 2x – 3 \) and \( g(x) = x^2 + 1 \), find \( (g \circ f)(-2) \) (i.e., \( g(f(-2)) \)).

  • (a) \( 1 \)
  • (b) \( 4 \)
  • (c) \( 5 \)
  • (d) \( 3 \)



(15) Solve for \(x\):
\[ 5(2x – 3) = 3(4x + 1) \]

  • (a) \( x = 1 \)
  • (b) \( x = 2 \)
  • (c) \( x = -3 \)
  • (d) \( x = 3 \)


Author: user