Algebra and Functions – Basic 1

(6) Solve for \(x\):
\[ \frac{x}{4} – 3 = \frac{5}{2} \]

  • (a) \( x = 12 \)
  • (b) \( x = 4 \)
  • (c) \( x = 14 \)
  • (d) \( x = 10 \)



(7) Evaluate the expression:
\[ | -7 | + | -3 | \]

  • (a) \( 10 \)
  • (b) \( -10 \)
  • (c) \( 10 \)
  • (d) \( -10 \)



(8) If \( f(x) = 3x + 2 \) and \( g(x) = 2x – 5 \), find \( (f \circ g)(1) \) (i.e., \( f(g(1)) \)).

  • (a) \( 0 \)
  • (b) \( 4 \)
  • (c) \( 6 \)
  • (d) \( 7 \)



(9) Solve for \(x\):
\[ 2(x – 3) = 5x – 7 \]

  • (a) \( x = 3 \)
  • (b) \( x = 2 \)
  • (c) \( x = 5 \)
  • (d) \( x = 4 \)



(10) Evaluate the expression:
\[ \frac{6x^3 + 9x^2 – 15x}{3x} \]

  • (a) \( 3x^2 + 3x – 5 \)
  • (b) \( 2x^2 + 3x – 5 \)
  • (c) \( 2x^2 + 3x – 4 \)
  • (d) \( 3x^2 + 3x – 4 \)


Author: user