Pandas API on Spark offers robust capabilities for data manipulations and SQL operations. This article dives deep into leveraging the ‘merge_asof’ function to perform asof merges effortlessly, unlocking new possibilities for data analysis and insights.
Understanding the ‘merge_asof’ Function
The ‘merge_asof’ function in Pandas API on Spark facilitates performing an asof merge between two DataFrames. An asof merge is particularly useful for merging datasets where one DataFrame contains time-series data, and the other DataFrame contains events or observations that need to be matched with the nearest preceding time in the time-series data.
Syntax:
merge_asof(left, right, on=None, left_on=None, right_on=None, ...)
- left: The left DataFrame.
- right: The right DataFrame.
- on: Column name or list of column names to join on.
- left_on: Column name or list of column names from the left DataFrame to join on.
- right_on: Column name or list of column names from the right DataFrame to join on.
Example: Performing an Asof Merge
Consider two DataFrames representing stock prices and trade events:
Stock Prices DataFrame:
+--------+----------+-----+
|Stock_ID| Date|Price|
+--------+----------+-----+
| 1|2022-01-01| 100|
| 2|2022-01-02| 110|
| 3|2022-01-03| 105|
+--------+----------+-----+
Trade Events DataFrame:
+--------+----------+------+
|Stock_ID| Date|Action|
+--------+----------+------+
| 1|2022-01-02| Buy|
| 2|2022-01-03| Sell|
| 3|2022-01-04| Buy|
+--------+----------+------+
Now, let’s perform an asof merge to match each trade event with the nearest preceding stock price:
from pyspark.sql.functions import expr
# Perform asof merge
asof_merged_df = stock_prices_df.alias("sp").join(trade_events_df.alias("te"), expr("""
sp.Stock_ID = te.Stock_ID AND
te.Date >= sp.Date
"""), 'left').groupBy('sp.Stock_ID', 'sp.Date').agg(expr("last(sp.Price) as Price"), expr("first(te.Action) as Action"))
print("\nAsof Merged DataFrame:")
asof_merged_df.show()
Asof Merged DataFrame:
+--------+----------+-----+------+
|Stock_ID| Date|Price|Action|
+--------+----------+-----+------+
| 1|2022-01-01| 100| Buy|
| 2|2022-01-02| 110| Sell|
| 3|2022-01-03| 105| Buy|
+--------+----------+-----+------+
Spark important urls to refer